Wapbum.ru

Wapbum.ru - обоюдовыгодный блог

Метки: Биометрические 10 рублевые монеты список, биометрические исследования отпечатки пальцев, биометрические шенгенские визы что это.

Биметрические теория гравитацииальтернативные теории гравитации, в которых вместо одного метрического тензора используются два или более. Часто вторая метрика вводится только при высоких энергиях, в предположении, что скорость света может иметь зависимость от энергии. Наиболее известными примерами биметрических теорий являются теория Розена и релятивистская теория гравитации (последняя — в канонической трактовке).

Биметрическая теория Розена

В общей теории относительности предполагается, что расстояние между двумя точками в пространстве-времени определяется метрическим тензором. Уравнения Эйнштейна используются затем для расчета формы метрики на основании распределения энергии.

Натан Розен (1940) предложил в каждой точке пространства-времени ввести в дополнение к риманову метрическому тензору евклидов метрический тензор . Таким образом, в каждой точке пространства-времени мы получаем две метрики:

Первый метрический тензор описывает геометрию пространства-времени и, таким образом, гравитационное поле. Второй метрический тензор относится к плоскому пространству-времени и описывает инерционные силы. Символы Кристоффеля, сформированные из и , обозначим и соответственно. определим таким образом, чтобы

		  	
\Delta^{i}_{jk}=\{^{i}_{jk}\}-\Gamma^{i}_{jk}~~~~~~~~~~~~~~(1)

Теперь возникают два вида ковариантного дифференцирования: -дифференцирование, основанное на — обозначается точкой с запятой (;), и 3-дифференцирование на основе — обозначается символом / (обычные частные производные обозначаются запятой (,)). и будут тензорами кривизны, рассчитываемыми из и соответственно. На основе вышеизложенного подхода, в том случае, когда описывает плоскую пространственно-временную метрику, тензор кривизны равен нулю.

Из (1) следует, что хотя и не являются тензорами, но — тензор, имеющий такую же форму, как , за исключением того, что обычная частная производная заменяется 3-ковариантной производной. Простой расчет приводит к


R^{h}_{ijk}=-\Delta^{h}_{ij/k}+\Delta^{h}_{ik/j}+\Delta^{h}_{mj}\Delta^{m}_{ik}-\Delta^{h}_{mk}\Delta^{m}_{ij}

Каждый член в правой стороне этого соотношения является тензором. Видно, что от общей теории относительности, можно перейти к новой теории, заменив на , обычное дифференцирование на 3-ковариантное дифференцирование, на , элемент интегрирования на , где , и . Необходимо отметить, что, как только мы ввели в теорию, то в нашем распоряжении оказывается большое число новых тензоров и скаляров. Таким образом, можно получить уравнения поля, отличающиеся от уравнений поля Эйнштейна.

Уравнение для геодезической в биметрической теории относительности (БТО) принимает форму

		  	
\frac{d^2x}{ds^2}+\Gamma^{i}_{jk}\frac{dx^{j}}{ds}\frac{dx^{k}}{ds}+\Delta^{i}_{jk}\frac{dx^{j}}{ds}\frac{dx^{k}}{ds}=0~~~~~~~~~~~~~~(2)

Из уравнений (1) и (2) видно, что можно считать, что описывает инерциальное поле, поскольку исчезает при помощи подходящего преобразования координат. Свойство же быть тензором не зависит от каких-либо систем координат, и, следовательно, можно полагать, что описывает постоянное гравитационное поле.

Розеном (1973) были найдены биметрические теории, удовлетворяющие принципу эквивалентности. В 1966 г. Розен показал, что введение плоской пространственной метрики в рамках общей теории относительности не только позволяет получить плотность энергии-импульса тензора гравитационного поля, но также позволяет получить этот тензор из вариационного принципа. Уравнение поля в БТО, полученное из вариационного принципа


K^{i}_{j}= N^{i}_{j}-\frac{1}{2}\delta^{i}_{j}N = -8 \pi \kappa T^{i}_{j}~~~~~~~~~~~~~~(3)

где

	  	
N^{i}_{j}=\frac{1}{2}\gamma^{\alpha \beta}(g^{hi} g_{hj /\alpha})_{/ \beta}

или


N^{i}_{j}= \gamma^{\alpha \beta}\left\{(g^{hi}g_{hj, \alpha}),\beta 
- (g^{hi}g_{mj}\Gamma^{m}_{h\alpha}),\beta\right\} - \gamma^{\alpha \beta}(\Gamma^{i}_{j\alpha}),\beta + \Gamma^{i}_{\lambda \beta}[g^{h\lambda}g_{hj},\alpha - g^{h\lambda}g_{mj}\Gamma^{m}_{h\alpha} - \Gamma^{\lambda}_{j\alpha}]-\Gamma^{\lambda}_{j\beta}[g^{hi}g_{h\lambda},\alpha - g^{hi}g_{m\lambda}\Gamma^{m}_{h\alpha} -\Gamma^{i}_{\lambda\alpha}]

+ \Gamma^{\lambda}_{\alpha \beta}[g^{hi}g_{hj},\lambda - g^{hi}g_{mj}\Gamma^{m}_{h\lambda} -\Gamma^{i}_{j\lambda}]
	  	
N= g^{ij}N_{ij}, \kappa=\sqrt{\frac{g}{\gamma}},

и - тензор энергии-импульса. Вариационный принцип приводит также к связи


T^{i}_{j;i}=0.

Поэтому из (3)


K^{i}_{j;i}=0,

что подразумевает, что пробная частица в гравитационном поле движется по геодезической по отношению к . Физические следствия такой теории, впрочем, не отличаются от общей теории относительности.

При ином выборе исходных уравнений биметрические теории и ОТО различаются в следующих случаях:

  • Распространение электромагнитных волн
  • Внешнее поле звезд высокой плотности
  • Распространение интенсивных гравитационных волн через сильное статическое гравитационное поле


Ссылки

  • N. Rosen (1940). «General Relativity and Flat Space. I». Phys. Rev. 57 (2): 147-150. 10.1103/PhysRev.57.147.
  • N. Rosen (1940). «General Relativity and Flat Space. II». Phys. Rev. 57 (2): 150-153. 10.1103/PhysRev.57.150.
  • N. Rosen (1973). «A bi-metric theory of gravitation». General Relativity and Gravitation 4 (6): 435-447. 10.1007/BF01215403.
  • N. Rosen (1975). «A bi-metric theory of gravitation. II». General Relativity and Gravitation 6 (3): 259-268. 10.1007/BF00751570.


п·о·р
Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика

Релятивистская физика

Принципы

Классические

Релятивистские

Многомерные

Струнные

Прочие

Tags: Биометрические 10 рублевые монеты список, биометрические исследования отпечатки пальцев, биометрические шенгенские визы что это.