Wapbum.ru

Wapbum.ru - обоюдовыгодный блог

Задачи тысячелетия
Равенство классов P и NP
Гипотеза Ходжа
Гипотеза Пуанкаре
Гипотеза Римана
Квантовая теория
Янга — Миллса
Существование и гладкость 
решений уравнений
Навье — Стокса
Гипотеза
Бёрча — Свиннертон-Дайера

Существование и гладкость решений уравнений Навье — Стокса — одна из семи математических задач тысячелетия, сформулированных в 2000 году Математическим институтом Клэя.

Уравнения Навье — Стокса описывают движение вязкой ньютоновской жидкости и являются основой гидродинамики. Численные решения уравнений Навье — Стокса используются во многих практических приложениях и научных работах. Однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях, поэтому нет полного понимания свойств уравнений Навье — Стокса. В частности, решения уравнений Навье — Стокса часто включают в себя турбулентность, которая остаётся одной из важнейших нерешённых проблем в физике, несмотря на её огромную важность для науки и техники.

Уравнения Навье — Стокса

В математике это система нелинейных дифференциальных уравнений в частных производных для абстрактных векторных полей любой размерности. В физике это система уравнений, которая в рамках механики сплошных сред описывает движение жидкостей или неразреженных газов.

Пусть  — трёхмерный вектор скорости жидкости,  — давление. Тогда уравнения Навье — Стокса записываются так:

где  — это кинематическая вязкость,  — плотность,  — внешняя сила,  — оператор набла и  — оператор Лапласа (лапласиан), который также обозначается, как . Отметим, что это векторное уравнение, то есть оно содержит три скалярных уравнения. Если обозначить компоненты векторов скорости и внешней силы, как

то для каждого значения получается соответствующее скалярное уравнение Навье — Стокса:

Неизвестными величинами являются скорость и давление . Поскольку в трёхмерном случае получается три уравнения и четыре неизвестных (три компоненты скорости и давление), то необходимо ещё одно уравнение. Дополнительным уравнением является закон сохранения массы

Если среду считать несжимаемой, то это уравнение преобразуется в условие несжимаемости жидкости:

Ссылки